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Abstract

As a research hotspot, the development of magnetic resonance imaging (MRI)

contrast agents has attracted great attention over the past decades for improv-

ing the accuracy of diagnosis. Ultrasmall superparamagnetic iron oxide

(USPIO) nanoparticles with core diameter smaller than 5.0 nm are expected to

become a next generation of contrast agents owing to their excellent MRI per-

formance, long blood circulation time upon proper surface modification, renal

clearance capacity, and remarkable biosafety profile. On top of these merits,

USPIO nanoparticles are used for developing not only T1 contrast agents, but

also T2/T1 switchable contrast agents via assembly/disassembly approaches. In

recent years, as a new type of contrast agents, USPIO nanoparticles have

shown considerable applications in the diagnosis of various diseases such as

vascular pathological changes and inflammations apart from malignant

tumors. In this review, we are focusing on the state-of-the-art developments

and the latest applications of USPIO nanoparticles as MRI contrast agents to

discuss their advantages and future prospects.
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1 | INTRODUCTION

Magnetic resonance imaging (MRI) has been demonstrated to be one of the most important and powerful imaging tech-
niques in clinical diagnosis due to its non-invasiveness, high spatial resolution, and no ionizing radiation nature
(Koenig & Kellar, 1995; Lee & Hyeon, 2012; Na & Hyeon, 2009). As the relaxation times of different tissues often over-
lap, enhancing the imaging contrast particularly that between the benign and malignant tissues has been becoming one
of the important subjects for MRI. Following this need, versatile MRI contrast agents are being created.

In fact, the MRI contrast agent itself does not produce a signal, but it changes the relaxation efficiency of water pro-
tons close-by to improve the imaging contrast. To this end, two types of MRI contrast agents, that is, T1 (or positive)
contrast agents and T2 (or negative) contrast agents, are developed accordingly. T1 contrast agents are usually coordina-
tion compounds or inorganic nanoparticles containing paramagnetic metal ions (with unpaired electrons), which can
accelerate the longitudinal relaxation of protons, thereby producing brighter MR images, while T2 contrast agents are
usually superparamagnetic iron oxide (SPIO) nanoparticles which can effectively shorten the transverse relaxation time
of protons, thus generating darker MR images. So far, a variety of MRI contrast agents have been reported and used in
preclinical and clinical studies, including gadolinium (Gd)-based contrast agents (GBCAs), manganese (Mn)-based con-
trast agents, and iron oxide-based contrast agents. Among these MRI contrast agents, GBCAs are the most prevalent T1

contrast agents in the clinic, such as Magnevist (Gd-DTPA), ProHance (Gd-DO3A-HP), Omniscan (Gd-DTPA-BMA),
Dotarem (Gd-DOTA), Eovist (Gd-EOB-DTPA), and Optimark (Gd-DTPA-BMEA) (Caspani et al., 2020). However, due
to potential risk of nephrogenic systemic fibrosis (NSF) caused by the free Gd3+ ions, GBCAs, that is, Magnevist,
Omniscan, and Optimark are considered as “high risk” by the US Food and Drug Administration (FDA), especially for
patients with acute kidney injuries or severe renal diseases. In addition, Gd3+ deposition in the human brain is another
noticeable adverse effect of GBCAs, for example, Omniscan (McDonald et al., 2015). Besides, the short blood circulation
time of small-molecule GBCAs limits their applications in high-resolution MRI that require long scan window. Mn-
based T1 contrast agents include Mn-chelates (e.g., Mn-DPDP), Mn-containing nanoparticles, and manganese oxide
nanoparticles (e.g., MnO, MnO2, Mn3O4, and MnOx) (Cai et al., 2019; Zeng et al., 2017). However, the application of
Mn-based contrast agents is limited by possible occurrence of neurodegenerative diseases due to the brain accumulation
and toxicity of free Mn2+ ions (Kamer et al., 2018; Reaney et al., 2006). Compared with Gd/Mn-based contrast agents,
iron oxide nanoparticles-based contrast agents are considered more biocompatible because iron is an essential element
of the human body and an indispensable part of hemoglobin (Z. Y. Gao et al., 2015; Jin et al., 2014; Lee et al., 2015;
Zeng, Jia, et al., 2014). SPIO nanoparticles are widely known as T2 contrast agents in the clinic for their ability to
shorten T2 relaxation time (Z. Y. Gao et al., 2015; J. C. Li et al., 2014; R. R. Qiao et al., 2009). Nevertheless, the applica-
tions of SPIO as liver-specific T2 contrast agents are widely adopted owing to the passive accumulation of SPIO
nanoparticles in liver. In addition, the dark signal of T2 contrast agents may be interfered by the background signals
such as bleeding, calcification, or metal deposition, which may mislead clinical diagnosis (Bietenbeck et al., 2015;
Daldrup-Link, 2017). Moreover, the “blooming effect” induced by T2 contrast agents can enlarge the imaging area and
may further reduce the resolution of T2-weighted MRI because of the disturbance of local magnetic field caused by the
high magnetic moment of T2 contrast agents (Kim et al., 2011; Lee et al., 2011). In contrast, T1-weighted MRI can pro-
vide more accurate high-resolution imaging and thus becomes more favorable than T2-weighted MRI in the clinic.

In recent years, ultrasmall SPIO (USPIO) nanoparticles with a core diameter smaller than 5.0 nm have received
increasing attention as MRI contrast agents because they present both outstanding T1-weighted MRI performance
and excellent biocompatibility (Bao et al., 2018; Marco et al., 2007; Shen, Wu, & Chen, 2017; Zhao et al., 2014). With
the decrease of particle size, USPIO nanoparticles exhibit lowered magnetization due to the spin-canting effect, so
they can effectively shorten T1 relaxation time of water protons and are suitable for enhancing T1-weighted MRI.
Furthermore, the ultrasmall size endows the USPIO nanoparticles with the following advantages: (1) they can
escape the nonspecific uptake of mononuclear phagocytes to achieve long-term circulation, which is conducive to
the targeted imaging, steady-state imaging, as well as high-resolution imaging; (2) they are renal clearable upon
proper surface modification and thus can reduce the risk of iron overload especially for patients with iron metabo-
lism diseases to show better biocompatibility and biosafety; (3) they are suitable for generating T2/T1 switchable
contrast enhancement effects via assembly/disassembly for improving the sensitivity and accuracy of MRI. In view
of these unique advantages, a variety of USPIO-based MRI probes have been designed for the diagnosis of various
diseases. Herein, we comprehensively compare USPIO with both Gd/Mn- and SPIO-based MRI contrast agents,
combining the recent progress, to discuss about the current status and future prospects of USPIO as a new genera-
tion of MRI contrast agent.
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2 | ADVANTAGES OF USPIO NANOPARTICLES

2.1 | Outstanding MRI performance

USPIO is composed of an ultrasmall inorganic iron oxide core and an organic surface shell, which is normally used as
T1 contrast agent in contrast to SPIO that has a larger core and is widely accepted as T2 contrast agent. The core size of
iron oxide particles strongly determines their relaxation properties. Nevertheless, the surface structure also plays impor-
tant roles which are elucidated by the inner/outer sphere models (Bai et al., 2018; Jeon et al., 2020; Ni et al., 2017; Shen,
Chen, et al., 2017). The inner sphere model tells that reducing the particle size is in favor of high longitudinal relaxivity
(r1), because the specific surface area increases as the particle size decreases, and thus the water protons can effectively
interact with more iron ions of small particles. The outer sphere model, however, argues that reducing the particles size
will decrease the magnetization and lower the transversal relaxivity (r2), because the volume of the ordered spin is
decreased with the decrease of particle size (Shin et al., 2015; Zhou et al., 2019). Therefore, USPIO becomes extraordi-
narily suitable for T1-weighted MRI owing to the high r1 value and the small r2/r1 ratio (C. L. Liu et al., 2014).

Kim et al. compared the magnetic properties of differently sized USPIO particles, that is, 1.5, 2.2, and 3.0 nm, with SPIO
nanoparticles of 12 nm and found that the magnetization of iron oxide particles drops as the diameter decreases, especially
for the USPIO (Figure 1(a)) (Kim et al., 2011). The low magnetization of USPIO can be attributed to the enhanced spin-
canting effect owing to the small core size (Figure 1(b)). For example, the calculated spin-canting ratio increased from
38.6% for 12 nm SPIO to 93.6% for 3.0 nm USPIO and further to 99.4% for 2.2 nm USPIO. As expected, USPIO of 3.0 nm
gives rise to bright MRI images, while SPIO of 12 nm produces negative contrast, as shown in Figure 1(c). However, it is
not always that the smaller the particle size, the higher the r1 value and stronger the T1 contrast enhancement. In order to
find the optimal size for T1-weighted MRI, Shen et al. synthesized a series of size controllable USPIO of 1.9, 2.6, 3.3, 3.6,
4.2, 4.8, and 4.9 nm to find out the particle size dependency of r1 and r2/r1 as well (Shen, Chen, et al., 2017). Obviously, the
r1 value increases firstly and decreases against the particle size, while r2/r1 presents a reverse tendency, giving rise to an
optimal size of 3.6 nm for T1 contrast enhancement, as shown in Figure 1(d),(e). The non-monotonic particle size depen-
dency of r1 is probably caused by the overall effects of inner/outer spheres that affect r1 oppositely.

Although the magnetization of USPIO particles largely decreases with the decrease of particle core size, they may
still exhibit strong T2 enhancement ability if the core size is appropriately controlled, leading to T1/T2 dual-modal imag-
ing contrast agents (X. Ma et al., 2019; G. Wang et al., 2016). For example, Gao group has developed polyethylene glycol
(PEG)-coated iron oxide nanoparticles (Hu et al., 2011). A high-performance T1/T2 dual-modal MRI contrast agent with
r1 of 19.7 mM�1 s�1 and r2 of 39.5 mM�1 s�1 under 1.5 T was obtained. The excellent dual-modal contrast enhancement
effects may be attributed to the suitable core size (5.4 nm) and high saturation magnetization (94 emu g�1), the latter of
which was mainly related to high crystallinity and surface coating. Li et al. reported USPIO of 3.3 nm showing r1
of 8.3 mM�1 s�1 and r2 up to 35.1 mM�1 s�1 under 4.7 T, better than those of the clinical T1 contrast agent Gd-DTPA
(r1 = 4.8 mM�1 s�1 and r2 = 5.3 mM�1 s�1) and the commercial SPIO-based contrast agent SHU-555C
(r1 = 2.9 mM�1 s�1 and r2 = 69 mM�1 s�1) (Z. Li et al., 2012).

As aforementioned, the core size of magnetic iron oxide nanoparticles exhibits opposite impacts on r1 and r2. It is
difficult to pursue simultaneously high r1 and high r2 simply by varying the particle size. To solve this problem and
uncover the effects of surface ligands on magnetic properties, Gao group prepared 3.6 nm and 10.9 nm iron oxide
nanoparticles coated with PEGs bearing different anchoring groups such as diphosphate (DP), hydroxamate (HX), and
catechol (CC) group, respectively (Figure 1(f)) (Zeng, Jing, et al., 2014). It was demonstrated that 3.6 nm USPIO coated
with HX-PEG and CC-PEG presented higher r1 and r2 than those modified with DP-PEG (Figure 1(g)), which was
explained by the affinity of the surface ligands that affected the magnetization of particles and the conjugated structure
of the anchoring groups that increased the inhomogeneity of the local magnetic field to enhance the T2 contrast effect.
In addition, the particle surface coating structure can also remarkably affect the relaxation properties of the
nanoparticles due to its strong correlation with the retention time and the number of coordinated water molecules in
the inner layer (Bai et al., 2018; C. L. Liu et al., 2014; Sherwood et al., 2017; Xie, Wang, et al., 2020). For instance, Xiao
et al. found that USPIO particles with different core size of 4.8–7.3 nm but similar hydrodynamic size of 9.9–14 nm and
r2/r1 ratios of 3.9–4.1 could also present different T1 contrast enhancement effects, for example, r1 of 15.9–
18.8 mM�1 s�1 for particles coated with surface ligand bearing a linear PEG segment and 5.3 mM�1 s�1 for those coated
with surface ligand bearing a brushed-PEG segment (Xiao et al., 2018). It was speculated that the slightly dense surface
coating formed by the brushed-PEG ligand would hinder the interaction between paramagnetic iron ions on particle
surface and surrounding water protons to reduce the r1 value.

CHEN ET AL. 3 of 22



In order to improve the accuracy of MRI in practice, versatile strategies have been proposed to prepare T1/T2 dual-
modality imaging contrast agents, although some USPIO particles present dual-modal MRI functions. Magnetic iron
oxide particles and Gd/Mn-chelates are representative T2 and T1 contrast agents, respectively, therefore, integrating
them together becomes a straightforward approach for producing T1/T2 dual-modal contrast agents (Huang et al., 2014;
Shin et al., 2014). For example, Yang et al. reported such a contrast agent constructed by covalently linking silica-coated

FIGURE 1 (a) Field-dependent magnetization curves of differently-sized USPIO nanoparticles at 300 K; (b) illustration of the spin

canting effect of USPIO particles with different diameters; (c) T1-weighted MRI of MCF-7 cell pellets after 24 h incubation with 3.0 nm and

12 nm iron oxide nanoparticles, respectively (Reprinted with permission from Kim et al., 2011, Copyright 2011, American Chemical Society);

(d) particle size dependencies of r1 value and r2/r1 ratio; (e) the corresponding T1 MR signal intensities of USPIO nanoparticles against Fe

concentration (Reprinted with permission from Shen, Chen, et al., 2017, Copyright 2017, American Chemical Society); (f) chemical

structures of the anchoring groups of three PEG-based ligands and the corresponding TEM images of 3.6 nm nanoparticle (S) and 10.9 nm

nanoparticle (L) stabilized by these three PEG ligands, respectively; and (g) T1/T2-weighted MR images of solutions containing these two

differently sized PEGylated particles (Reprinted with permission from Zeng, Jia, et al., 2014, Copyright 2014, Wiley). MCF-7, human breast

cancer cells; MRI, magnetic resonance imaging; PEG, polyethylene glycol; TEM, transmission electron microscope; USPIO, ultrasmall

superparamagnetic iron oxide
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SPIO with paramagnetic Gd-DTPA (H. Yang et al., 2011). The r1 value was found to increase significantly against Gd
content, while the r2 value was simultaneously decreased, indicating that Gd may interfere with the T2 relaxation pro-
cess of SPIO. Even though the resulting contrast agents exhibited dual-modal T1/T2 imaging contrast enhancement
effects, the above approach is defective due to the existing issues rooted in colloidal instability, composition-dependent
r1/r2 ratio as well as difficulties in further surface functionalization. Furthermore, the potential toxicity of the leaked
Gd3+ and Mn2+ is also problematic for further clinical applications.

The controllable assembly of USPIO particles formed upon stimulations with pH (Cao, He, et al., 2020; Jia
et al., 2021) and glutathione (GSH) (Cao, Mao, et al., 2020) has been demonstrated to be able to provide T1/T2 switch-
able contrast agents that are different from the above-mentioned T1/T2 dual-modality contrast agents that simulta-
neously show T1- and T2-weighted imaging contrast enhancement effects. For instance, Li et al. reported pH-sensitive
USPIO nanoparticles that are assembled through pH-responsive hydrazone bonds ( C═N N ) for T1-weighted MRI
of tumors (F. Li, Liang, et al., 2019). In neutral pH environment, the assembled particles presented enhanced
T2-weighted signals, while they fell apart in acidic tumor microenvironment to give rise to strong T1-weighted MR sig-
nal. Recently, Gao group constructed a GSH-responsive MRI probe that can be switched from T1 to T2 enhancement
due to the GSH-induced aggregation of the USPIO particles within tumors, which was further demonstrated possible
for quantitatively mapping the endogenous GSH in intracranial tumors through MRI (Zhang et al., 2021). In detail,
USPIO particles of 3.9 nm simultaneously bearing surface maleimide groups and functional peptide sequences were
designed to obtain the probe that displayed a strong T1 contrast enhancement effect in the absence of GSH. However, it
exhibited dramatically enhanced T2 enhancement in GSH-rich environment as GSH can reduce the disulfide bonds
embedded in the peptide sequence to generate thiol groups that react with the maleimide groups from the adjacent
USPIO particles to glue them together. It was further demonstrated that such GSH-induced particle aggregation could
give rise to interlocked T1 and T2 signal variations, which were proven to quantitatively correlate with GSH concentra-
tion to enable the GSH mapping of intracranial tumor in vivo (Zhang et al., 2021).

As discussed above, some key factors including size, surface properties, and aggregation status have been adopted to
adjust the relaxivities of USPIO to give rise to outstanding T1 or T1/T2 switchable MRI properties. Apart from the inher-
ent properties of the USPIO itself, the effects of external magnetic field strength on the contrast enhancement perfor-
mance cannot be ignored. Deng et al. studied the magnetic field (0.5, 1.5, and 3.0 T) dependent relaxivities of USPIO
(L. H. Deng et al., 2021). They found that increasing magnetic field strength will suppress the r1 effect, but slightly
increase the r2 effect of magnetic iron oxide particles, resulting in a sharp rise in r2/r1 ratio. Therefore, 4.0 nm USPIO
exhibiting good T1 contrast enhancement performance at 0.5 and 1.5 T showed excellent T1/T2 dual-modal contrast
enhancement ability at 3.0 T.

2.2 | Long blood circulation time

In general, nanoparticle-based MRI contrast agents particularly SPIO particles tend to be recognized and phagocytized
by the reticuloendothelial system (RES), while the small molecule-based ones are usually rapidly cleared through kid-
ney after intravenous delivery. Both of these two typical pharmacokinetic behaviors will shorten the blood circulation
time, which is unfavorable for acquiring a high-quality contrast MRI. In difference, USPIO shows a relatively long
blood circulation time owing to the appropriate size which is beneficial for suppressing the RES uptake, at the same
time facilitates the renal clearance. Deng et al. showed that 4.0 nm PEGylated USPIO could provide more than 2 h long
contrast-enhanced angiography, while the 8.0 nm counterpart with the same surface modification could only provide
30 min enhancement and Gd-DTPA enhancement lasted just for several minutes (L. H. Deng et al., 2021).

Similar to the intensively investigated SPIO, the appropriate surface functionalization of USPIO is necessary for
improving the antifouling ability to resist the nonspecific adsorption of proteins and other biological macromole-
cules, thereby extending blood residence time. PEG (S. Liu et al., 2010) and zwitterionic molecules (Pombo-García
et al., 2017) such as L-cysteine (L-Cys) (P. Wang, Yang, et al., 2017) and zwitterionic dopamine sulfonate (ZDS)
(Zhou et al., 2013) were used for such purpose. Sandiford et al. revealed that the nearly neutral surface potential of
�1.24 mV provided by PEG coatings and the high PEG density could work together to minimize the opsonization
of USPIO and suppress the following RES uptake (Sandiford et al., 2013). As they expected, the PEGylated USPIO
of 5.5 nm presented a blood half-life up to 3.0 h. In addition, Ma et al. demonstrated that the L-Cys modification
through a PEG spacer effectively increased blood half-life of 2.8 nm USPIO from 2.1 to 6.2 h, as shown in Figure 2
(a) (D. Ma et al., 2017).
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Prolonging the blood circulation time of USPIO is of great significance. First of all, the long blood half-life is favor-
able for improving the accumulation efficiency of the imaging probe at the disease site. For example, 3.0 nm USPIO
showed a higher accumulation in tumor than 10 nm and 20 nm SPIO counterparts due to the prolonged half-life up to
10 h, as shown in Figure 2(b) (L. Wang, Huang, et al., 2017). In addition, the long blood circulation time of USPIO will
allow a prolonged temporal scanning window for acquiring high spatial resolution MRI. Shin et al. found that USPIO
with a hydrodynamic diameter (HD) of 5.0 nm possessed stronger angiographic signal than Gd-DOTA at both their first
pass and steady state, thus gaining a longer temporal scanning window (Shin et al., 2021). To reveal the relationship
between the scanning time and MRI resolution, a spatial resolution model composed of capillaries with various sizes
ranging from 100 to 1000 μm was constructed. As shown in Figure 2(c), 10 min scanning gives rise to a spatial

FIGURE 2 (a) Blood circulation behaviors of USPIO-PEG nanoparticles and L-Cys modified USPIO-PEG nanoparticles (Reprinted with

permission from D. Ma et al., 2017, Copyright 2017, The Royal Society of Chemistry); (b) iron contents in tumor tissues harvested from mice

receiving intravenous injections of differently-sized iron oxide nanoparticles, respectively (Reprinted with permission from L. Wang, Huang,

et al., 2017, Copyright 2017, American Chemical Society); (c) the scanning time-dependent spatial resolution of MRI (Reprinted with

permission from Shin et al., 2021, Copyright 2021, Springer Nature); (d) the renal clearance curves of iron oxide nanoparticles with different

hydrodynamic sizes (Reprinted with permission from Xie, Wang, et al., 2020, Copyright 2020, American Chemical Society);

(e) biodistribution of ZDS-coated USPIO particles labeled with 59Fe in mice (Reprinted with permission from Wei et al., 2017, Copyright

2017, National Academy of Sciences). L-Cys, L-cysteine; MRI, magnetic resonance imaging; PEG, polyethylene glycol; USPIO, ultrasmall

superparamagnetic iron oxide; ZDS, zwitterionic dopamine sulfonate
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resolution as high as 100 μm under 3.0 T MRI, while �1.5 min scanning generates a much lower spatial resolution of
about 1000 μm. In this context, USPIO holds an opportunity to provide a better spatial resolution than Gd-DOTA for
MRI. Therefore, small particle size and appropriate surface modification are jointly in favor of bioavailability and imag-
ing resolution for achieving accurate diagnosis.

2.3 | Renal clearance

According to the requirements of FDA, all injected contrast agents should be completely cleared from the body within
a reasonable period of time for clinical translation (Choi et al., 2007). Renal clearance is advisable for nanoparticles as
it helps reduce the unwanted retention in nontargeted tissues after intravenous delivery (Ehlerding et al., 2016; Xie, Xu,
et al., 2020; Zhou et al., 2020). Therefore, renal clearable contrast agents possess enormous superiority with respect to
clinical translations. Typically, it is believed that USPIO with a HD below the threshold of renal glomerular filtration
(6.0–8.0 nm) can be effectively cleared from the circulatory system through bladder and urine (J. Liu et al., 2013). How-
ever, to obtain such an ultrasmall HD, appropriate surface modification becomes essential in addition to properly con-
trolling the core size. Moreover, the surface modification structure strongly determines the colloidal stability and
antifouling ability, both of which critically regulate the clearance pathway of the intravenously delivered particles. The
long-chain PEGs, silica coating, hydrophilic surface modification with polymeric surfactants have been widely adopted
to increase the biocompatibility and prevent the serum protein adsorption. However, the HD of resulting nanoparticles
modified by the above surface coating often exceeds 10 nm.

Thus, aiming at facilitating renal clearance, various small-ligands were developed to modify USPIO nanoparticles.
For instance, Xie et al. reported a low molecular weight succinylated heparin (SH) for coating USPIO particles of 2.0,
3.0, and 5.0 nm to obtain particles with HD of 6.0, 6.8, and 8.1 nm, respectively (Xie, Wang, et al., 2020). As shown in
Figure 2(d), they further observed that the renal excretion rate, that is, 65.6%, 55.7%, and 49.5% determined via induc-
tively coupled plasma-mass spectrometry at 48 h postinjection, was inversely correlated with the HD. When the HD
was increased to 13.5 nm by coating 9.0 nm particles with the same SH, no renal clearance was observed. ZDS modifica-
tion is also suitable for obtaining small HD. For example, Wei et al. developed USPIO with a HD of 4.7 nm by coating
3.0 nm particles with ZDS (Wei et al., 2017). Through the following 59Fe-radiolabeling, the biodistribution in mice was
obtained as shown in Figure 2(e). It turned out that 65% of the injected USPIO nanoparticles were cleared through the
kidney within 4.0 h. Shin et al. gave another creative shot at renal clearable USPIO by controlling the overall size and
charge by growing an amorphous-like hydrous ferric oxide on a polysaccharide supramolecular core (Shin et al., 2021).
The bright enhancement of ureters and bladder illustrated that USPIO nanoparticles in the blood vessels were filtered
by the kidney, gathered in the bladder, and finally excreted through the urinary tract. By quantitatively monitoring the
content of USPIO in the urine, it was found that 92% of the USPIO nanoparticles were excreted within 8.0 h after intra-
venous injection, and �100% of the USPIO nanoparticles were cleared after 24 h, indicating that the USPIO
nanoparticles were completely excreted by kidney filtration within 1 day. They finally concluded that the ultrasmall
HD of �5.0 nm and slightly negative charge of �2.9 mV could in some ways preclude USPIO from binding serum pro-
teins and further accumulating in the mononuclear phagocytic system, thereby collectively facilitating the renal
clearance.

2.4 | Excellent biosafety

The short- and long-term biocompatibility as well as biosafety profile of USPIO nanoparticles have been evaluated at
different levels, including cell level such as human macrophages (Feng et al., 2010; Lunov et al., 2010; Saito
et al., 2012), hepatocytes (He et al., 2018), stem cells (Hao et al., 2019; Ledda et al., 2020), coronary artery endothelial
cells (Palacios-Hernandez et al., 2020), and neural precursor cells (Eamegdool et al., 2014), small animal level such as
mice (Ledda et al., 2020; Stanicki et al., 2014) and rats (Garcia-Fernandez et al., 2020), and large animal level such
as rabbits, beagle dogs, and macaques (Y. Lu et al., 2017; Rui et al., 2016). No obvious acute or chronic toxicity was
observed. For instance, Shin et al. explored the biocompatibility of USPIO composed of a polysaccharide supramolecu-
lar core and hydrous ferric oxide shell in rats (Shin et al., 2021). In the acute toxicity test, no abnormality in the sur-
vival, behavior or the histopathological analysis was observed after intravenous injection of the probe with dose up to
35 mg Fe/kg body weight. Similarly, Lu et al. found that the cytotoxicity of PEGylated USPIO on human umbilical vein
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endothelial cells and human periodontal ligament stem cells was low enough to be ignored (Y. Lu et al., 2017). The fur-
ther biosafety test in nonhuman primate macaques exhibited no death or adverse symptom after the intravenous injec-
tion of USPIO (10 mg Fe/kg body weight) over 3-month observation. Moreover, the hematological and serum
biochemical indexes of the macaques kept normal, indicating an excellent biocompatibility of USPIO on nonhuman
primates.

In order to show the biosafety of USPIO as T1 contrast agent, Chen et al. compared it with manganese oxide
nanoparticles (e.g., MnO NPs) and GBCAs (e.g., gadopentetate dimeglumine injection [GDI]) in mouse (R. Chen
et al., 2015). The total safety assessment on all three contrast agents was summarized and given in Figure 3(a). USPIO
nanoparticles with dose of 10 mg Fe/kg body weight exhibited the best biosafety profile with just one side effect of
endoplasmic reticulum stress on spleen. In contrast, GDI was obviously injurious to kidney due to the high accumula-
tion in renal tissue with significantly increased tumor necrosis factor-α and interleukin-6 presented in serum, while
MnO NPs were considered highly toxic because they induced a large number of adverse reactions. The same group fur-
ther assessed the toxicological risk of USPIO in renal failure rats to prove the feasibility of substituting GBCAs
(e.g., gadodiamide) with USPIO in clinical MRI diagnosis of patients with renal diseases (Weng et al., 2019). As shown
in Figure 3(b), only the gadodiamide-treated groups exhibited severe NSF symptoms that were probably related to the
dermatic Gd accumulation which could promote the activation of macrophages and the secretion of pro-inflammatory
cytokines to eventually induce the fibrosis pathway. Nevertheless, the USPIO-treated groups indicated a low risk of
NSF because there was neither activation of macrophages nor expression of profibrotic genes with dose up to 20 mg

FIGURE 3 (a) The biological effects of USPIO-, Gd- and Mn-based T1 MRI contrast agents delivered through intravenous injection

(Reprinted with permission from R. Chen et al., 2015, Copyright 2015, American Chemical Society); (b) toxicological risk assessments of

USPIO- and Gd-based T1 MRI contrast agents in renal failure rats (Reprinted with permission from Weng et al., 2019, Copyright 2019,

American Chemical Society). Gd, gadolinium; Mn, manganese; MRI, magnetic resonance imaging; PEG, polyethylene glycol; USPIO,

ultrasmall superparamagnetic iron oxide
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Fe/kg body weight. In a word, the above studies have clearly demonstrated the potential of USPIO nanoparticles as the
next generation of clinical T1 MRI contrast agent, but standardized methodologies remain to be developed for fully
depicting the biosafety profile of USPIO nanoparticles before their clinical application.

3 | APPLICATIONS OF USPIO NANOPARTICLES

The blood circulation time and biodistribution are needed to be specifically considered for the subsequent applications.
In this context, long blood circulation time and reduced organ accumulation of USPIO nanoparticles undoubtedly make
them potent candidates for a wide range of MRI applications, for example, blood pool imaging (Sandiford et al., 2013;
Tromsdorf et al., 2009; Wei et al., 2017), tumor imaging (Du et al., 2020; D. Liu et al., 2020; Shi et al., 2020; Song
et al., 2013; C. Yang et al., 2019; Zhang et al., 2020), atherosclerosis imaging (Alam et al., 2015; Ruetten et al., 2020;
Usman et al., 2015), and inflammation imaging (Abbas et al., 2020; Lagan et al., 2020; Luo et al., 2020).

3.1 | Blood pool imaging

Blood pool imaging plays an important role in clinical MRI because of its effective detection of multiple blood-related
diseases including myocardial infarction, renal failure, atherosclerotic plaque, thrombosis, tumor angiogenesis, and so
on. Basically, the prerequisite of given contrast agents for effective blood pool imaging is that the contrast agents must
have a sufficiently long blood residence time that is one of the unique features of USPIO nanoparticles (Gharehaghaji
et al., 2015; Thrippleton et al., 2019). Kim et al. demonstrated the potential of 3.0 nm PEG-derivatized phosphine oxide-
capped USPIO nanoparticles for blood pool imaging, which presented a high r1 value of 4.78 mM�1 s�1 and a low r2/r1
ratio of 6.12 under 3.0 T (Kim et al., 2011). Unlike Gd-DOTA, the USPIO nanoparticles showed an excellent perfor-
mance in high-resolution blood pool MRI, allowing the clear observation of various blood vessels with diameter down
to 0.2 mm. The excellent performance of PEG-coated USPIO was also observed by Lu et al. in large animals including
beagle dogs and macaques for magnetic resonance angiography (MRA) using a clinical 3.0 T MR scanner (Y. Lu
et al., 2017). The high-resolution arterial angiography results, as shown in Figure 4, clearly demonstrated that USPIO is
very suitable for small arteries imaging.

Theoretically, the resolution of MRI is closely related to the intensity of magnetic field. High magnetic field is in
favor of high spatial resolution and signal-to-noise ratio (SNR) (Duyn et al., 2007). Wang et al. reported an excellent
contrast agent composed of a 2.3 nm USPIO core and a PEG shell covalently attached through citric acid on the particle
surface for MRI under 7.0 T (J. Wang et al., 2021). They observed high T1 contrast enhancement which was explained
by the interactions between USPIO and the surrounding water protons via uncoordinated carboxyl groups of citric acid
on the particle surface. High-resolution imaging of cerebral vessels with pretty small diameters, for example, the middle
meningeal artery of approximately 140 μm was achieved with the USPIO probe. In difference, the Gd-DTPA and 20 nm
SPIO counterpart presented weak contrast enhancement that faded within 15 min. Recently, Shin et al. reported MRA
studies of USPIO particles under 9.4 T (Shin et al., 2021). In their study, the innovative contrast agent formed by poly-
saccharide supramolecular core and an amorphous-like iron oxide patched shell as mentioned above was prepared. The
excellent T1 enhancement effect of resulting particles was attributed to the facts that water molecules surrounding
the particles are easily accessible to the surface ferric ions and the iron oxide component exhibits low magnetization. In
consequence, as shown in Figure 4, blood vessels including the brain vessels, peripheral vessels, and coronary vessels of
rodents, and lower limb vessels of rabbits were successfully visualized, even for those with diameter down to 100 μm,
demonstrating great potential of USPIO probe for clinical applications.

3.2 | Tumor imaging

The enhanced permeability and retention (EPR) effect mediated by tumor vascular leakage is commonly considered as
the main reason for nanoparticles to enrich in the tumor site, providing nanoobjects with tumor passive targeting abil-
ity. In this context, long blood circulation time will surely provide more opportunities to USPIO nanoparticles for
targeting tumors through the EPR effect. Xie et al. reported the USPIO formed by coating 2.0 nm iron oxide particles
with thin and hydrophilic SH as mentioned above for tumor imaging (Xie, Wang, et al., 2020). The bright signals of the
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tumor area reached the maxima at 70 min after the intravenous injection of the USPIO particles into mice with tumor
xenografts through T1-weighted MRI, which was explained by EPR-associated passive targeting. Zhou et al. reported
zwitterion-coated 4.8 nm Gd-embedded iron oxide particles for tumor imaging through passive targeting on a subcuta-
neous SKOV3 ovarian cancer model (Zhou et al., 2013). After intravenous injection, the T1 MRI signals of the tumor
site increased over time, giving rise to the highest contrast between tumor and surrounding tissues at 2.0 h, as shown in
Figure 5(a),(b). Gao group also reported tumor imaging studies through EPR effect (Zeng, Jing, et al., 2014). They pre-
pared HX-PEG-coated 3.6 nm USPIO that presented high T1/T2 dual-modal contrast enhancement. The T1 and T2 MRI
signals of the tumorous site increased synchronously and then decreased gradually, providing a maximum ΔR1 of 33%
and ΔR2 of 54% at approximately 4.0 h postinjection, as shown in Figure 5(c),(d).

Although USPIO is easier to extravasate from the tumor vasculature, but the enhanced intravasation is also worth
being noted. It is reported that large size nanoparticles have a significant EPR effect due to their limited intravasation
of the extravasated particles back into the blood circulation, which inspires researchers to explore a feasible way to
enhance the EPR effect of USPIO nanoparticles (Cabral et al., 2011). As mentioned before, the relaxation time and MR
imaging contrast behavior can be tuned by the aggregation states of USPIO nanoparticles, for example, the clustering of
USPIO nanoparticles can significantly decrease the T1 effect while increase the T2 effect (D. Ma et al., 2020). Thus, the
following strategy was proposed, that is, delivering the assembled USPIO nanoparticles into tumors to take the advan-
tage of stronger EPR effect of larger particles, and then disassembling them under the stimulation of tumor microenvi-
ronment to recover the strong T1 effect of USPIO. As the assembled USPIO particles taken up by normal tissue present
strong T2 effect, while the disassembled particles within tumorous site present strong T1 effect, the contrast between
the tumorous site and the surrounding tissues is thus improved. This strategy has been demonstrated to be effective for
detecting small hepatocellular carcinoma (HCC) (Figure 6(a)) (J. Lu et al., 2018). In this study, the anchor DNA-
modified USPIO nanoparticles were cross-linked by pH-responsive i-motif DNAs to generate particle clusters that were
disassembled into individual USPIO nanoparticles again in acidic tumor environment, which gives rise to improved
contrast between the normal liver and the HCC tumor at 2.0 h postinjection, significantly better than the non-
responsive USPIO probes, as shown in Figure 6(b).

In such an “one-directional” approach, the intravasation of large particle clusters from tumor tissue interstitial to
blood vessels is expected to be slow. However, the formation of large particle clusters will shorten the blood circulation
time, which makes this approach specifically suitable for liver cancer diagnosis. Regarding the diagnosis of other
tumors, a “bidirectional” combining enhanced extravasation and reduced intravasation was proposed for improving the

FIGURE 4 (a) High-resolution TEM image of PEGylated USPIO nanoparticles; (b–d) USPIO-enhanced arterial MRA of the whole body

(b,c) and upper body (d) of a beagle dog; (e) USPIO-enhanced MRA of the upper body of a macaque (Reprinted with permission from Y. Lu

et al., 2017, Copyright 2017, Springer Nature); (f) negatively stained TEM image of USPIO; (g–j) T1-weighted MRI of brain vessels (g),

peripheral vessels (h), and coronary vessels (i) of rodents and lower-extremity vessels of rabbits (j), respectively (Reprinted with permission

from Shin et al., 2021, Copyright 2021, Springer Nature). MRA, magnetic resonance angiography; MRI, magnetic resonance imaging; PEG,

polyethylene glycol; TEM, transmission electron microscope; USPIO, ultrasmall superparamagnetic iron oxide
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EPR effect. Specifically, USPIO nanoparticles in dispersive state are delivered and then self-assembled into particle
aggregates within tumors to suppress their reentry into the blood circulation (Zhou et al., 2017). Wang et al. compared
SPIO particles of 10 and 20 nm with 3.5 nm USPIO particles for 4 T1 tumor imaging (L. Wang, Huang, et al., 2017).
They found that USPIO particles coated by oligosaccharide exhibited a deeper tumor penetration and greater tumor
accumulation because of the enhanced tumor passive targeting ability gained through self-assembly. As shown in
Figure 6(c)–(e), the 3.5 nm USPIO particles can reach the area as far as 60–80 μm away from the vascular wall, but this
distance is only of 10 μm for the 20 nm SPIO nanoparticles. The self-assembling behavior of USPIO particles in the
tumors was explained by the gradual protonation of carboxyl groups on the particle surface induced by acidic tumor
microenvironment. As expected, a switch from the bright T1 contrast at 60 min postinjection to the dark T2 contrast of
the tumor site at 24 h later was observed after intravenous injection of USPIO (Figure 6(f)). Gao group also developed a
T1 to T2 conversion imaging probe for MRI of small intracranial tumor (2.4 mm � 1.6 mm) (Figure 7(a)) (Zhang
et al., 2021). They modified the surface of USPIO with angiopep-2 peptide for crossing the blood–brain barrier to deliver
the USPIO particles to target the brain glioma. Simultaneously, they introduced maleimide surface residues that can
react with thiol group generated by reducing the disulfide bond embedded in the peptide sequence with GSH. With
such a responsive design, the monodisperse USPIO particles can form agglomerate in the presence of GSH that is highly
excreted in tumor microenvironment, which gives rise to T1/T2 interlocked variations of T1 and T2 signals (Figure 7(b),
(c)). As shown in Figure 7(d), after intravenous injection of the GSH-responsive nanoprobe, the T1 signal in the tumor
area reached the maximum intensity at 3.0 h and then declined, but still kept identifiable at 9.0 h. In difference, the T2

signal began to present a low part at 1.0 h and reached a plateau between 3.0 and 5.0 h, and then increased significantly
again at 7.0 h postinjection. In comparison with the nonresponsive nanoprobe, the GSH-responsive nanoprobe
exhibited prolonged contrast enhancement time and interlocked signal variations, which is greatly helpful for excluding
false diagnosis.

FIGURE 5 (a) T1-weighted MRI and (b) quantificational analysis of the temporal SNR of tumors after intravenous injection of 4.8 nm

Gd-embedded ZDS-coated USPIO nanoparticles (Reprinted with permission from Zhou et al., 2013, Copyright 2013, American Chemical

Society); (c) T1-weighted and T2-weighted MRI and (d) the temporal evolution of R1 and R2 values of tumors after intravenous injection of

HX-PEG-coated 3.6 nm USPIO nanoparticles (Reprinted with permission from Zeng, Jing, et al., 2014, Copyright 2014, Wiley). Gd,

gadolinium; HX, hydroxamate; MRI, magnetic resonance imaging; PEG, polyethylene glycol; SNR, signal-to-noise ratio; USPIO, ultrasmall

superparamagnetic iron oxide; ZDS, zwitterionic dopamine sulfonate
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Furthermore, in order to improve tumor targeting ability of the contrast particles, conjugating functional tumor-
specific ligands, for example, hyaluronic acid, folic acid, antibodies, aptamers, and peptides, to the surface of USPIO
nanoparticles has become one of the main strategies, to realize the so-called active targeting (Darguzyte et al., 2020;
Duan et al., 2019; Z. Gao et al., 2017; Luo et al., 2015; Wu et al., 2018; Yin et al., 2019). For example, based on the spe-
cific interaction with integrin αvβ3 overexpressed on the angiogenic tumor vessels, the arginine-glycine-aspartic (RGD)
peptide is often adopted to improve the accumulation of USPIO nanoparticles in the tumor site (S. Deng et al., 2015;
Sun et al., 2018; Xue et al., 2015; J. Yang et al., 2015). Bai et al. reported a RGD-modified USPIO (USPIO-RGD) probe

FIGURE 6 (a) Illustration of the mechanism of HCC imaging using pH-responsive USPIO nanoparticles for T1/T2 MRI; (b) in vivo T1-

weighted MRI of acid responsive USPIO-based assembly (top) and nonresponsive USPIO-based assembly (bottom) (Reprinted with

permission from J. Lu et al., 2018, Copyright 2018, American Chemical Society); (c,d) three-dimensional model reconstruction to show the

distribution of oligosaccharide-coated 3.5 nm USPIO nanoparticles and 20 nm SPIO nanoparticles in tumor; and (e) the analysis on the

distance between nanoparticles and blood vessels; (f) in vivo MRI of tumors with the aid of USPIO nanoparticles as contrast agents

(Reprinted with permission from L. Wang, Huang, et al., 2017, Copyright 2017, American Chemical Society). HCC, hepatocellular

carcinoma; MRI, magnetic resonance imaging; USPIO, ultrasmall superparamagnetic iron oxide
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and the following in vivo imaging studies clearly showed that the integrin αvβ3-specific USPIO-RGD gave rise to effec-
tively improved T1 contrast in comparison to its mother particle, which was caused by the improved accumulation of
USPIO-RGD as demonstrated through Prussian blue and immunohistochemical staining (Bai et al., 2018). However,
targeting ligands may also bind to the cells of nontarget site, decreasing the bioavailability of the nanoprobe. To alleviate
this problem, Shen et al. intelligently modified acid-sensitive PEG on the poly(acrylic acid) (PAA) stabilized 3.6 nm USPIO
to hide RGD residues within the surface coating layer in the neutral bloodstream, while in the acidic tumor environment
the PEG segment was detached to expose the RGD moieties for firmly binding the USPIO with the tumor cells (Shen,
Chen, et al., 2017). In T1-weighted MRI, the above smart nanoprobes exhibited a tumor ΔSNR up to 203.4% at 12 h post-
injection, much higher than those achieved by the PAA-stabilized USPIO and Gd-DTPA controls. In addition, it is worth
mentioning that the designed nanoprobes enabled much higher ΔSNR in tumor than that in liver and in spleen, implying
their outstanding efficacy for tumor targeting. To sum up, USPIO enables versatile approaches including EPR-mediated
passive targeting and tumor-specific ligands-directed active targeting for tumor diagnosis owing to its unique properties
associated with the small particle size, aggregation-dependent relaxation properties, and high specific surface area.

FIGURE 7 (a) Schematic diagram of a responsive nanoprobe based on GSH-induced aggregation of USPIO nanoparticles for T1/T2-

weighted MRI of intracranial tumors; (b) TEM image of USPIO particle clusters formed in the presence of GSH; (c) GSH concentration

dependent ΔR1 and ΔR2 of GSH-responsive USPIO nanoparticles in vitro; (d) T1-weighted (top) and T2-weighted (bottom) MRI of brain

glioma acquired at different time points after the intravenous injections of GSH-responsive and nonresponsive probes, respectively, together

with the quantified T1 and T2 signal placed right-hand side (Reprinted with permission from Zhang et al., 2021, Copyright 2021, Wiley).

GSH, glutathione; MRI, magnetic resonance imaging; TEM, transmission electron microscope; USPIO, ultrasmall superparamagnetic iron

oxide
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3.3 | Atherosclerosis imaging

Atherosclerosis is a kind of chronic inflammation of arterial wall caused by the accumulation of lipid, resulting in arte-
rial narrowing and thrombosis (J. Chen et al., 2021; Evans et al., 2020). It is the primary cause of many lethal cardiovas-
cular diseases, such as acute myocardial infarction and stroke (R. Qiao et al., 2020). T1-weighted MRI is especially
suitable for the imaging of vascular thrombosis, because the thrombus presents bright signal in the image, while the
surrounding tissue and blood generate dark signals, giving rise to a large contrast (Ta et al., 2017). USPIO nanoparticles

FIGURE 8 (a) Schematic illustration of the preparation of USPIO-scFv conjugates; (b) T1-weighted and T2-weighted MRI of carotid

arteries with USPIO-scFv nanoprobe (top) and the mother USPIO as control (bottom) (Reprinted with permission from Ta et al., 2017,

Copyright 2017, Elsevier); (c) schematic illustration of T1/T2 MRI for inflammation based on the light-triggered USPIO nanoprobes; (d) T1-

weighted MRI of normal arthritis (top) and folate inhibited arthritis models (bottom); (e) T1-weighted (top) and T2-weighted (bottom) MRI,

and the corresponding quantified data of arthritis area acquired before and after laser irradiation (Reprinted with permission from X. Li, Lu,

et al., 2019, Copyright 2019, Wiley). MRI, magnetic resonance imaging; USPIO, ultrasmall superparamagnetic iron oxide
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possess a long blood circulation time and are able to enter the plaques through leaky endothelium. Macrophages are
abundant in atherosclerotic plaques and can effectively take up USPIO to enhance T1 MRI signal, which is very benefi-
cial for atherosclerosis imaging (Y. Li, Pan, et al., 2019; C. L. Liu et al., 2014; Mo et al., 2020; Smits et al., 2017).

Pellico et al. studied the potential of MRI for atherosclerosis diagnosis through ex vivo analysis of aortas from apoli-
poprotein E-deficient (ApoE�/�) mice by injecting 2.8 nm 68Ga-doped USPIO with a citrate coating (Pellico
et al., 2019). The hyperintense areas of the lesion were clearly observed in both the axial and three-dimensional view of
the aorta, indicating the accumulation of nanoparticles in the aorta. In an attempt to obtain highly sensitive and precise
diagnostic information, Ta et al. developed the poly(methacrylic acid) stabilized 3.3 nm USPIO nanoparticles for
targeted T1/T2-weighted MRI of atherothrombosis (Figure 8(a)) (Ta et al., 2017). The USPIO was modified with single-
chain antibodies (scFv) to target the activated platelets that were a key player of atherosclerosis and thrombosis. The
in vitro experiments proved that the USPIO-scFv probe has strong binding affinity to human thrombus. Further in vivo
imaging on the mouse carotid arterial thrombus models demonstrated that USPIO-scFv induced apparent signal
enhancement in both T1-weighted MRI and T2-weighted MRI of thrombus area, while the non-targeted USPIO pro-
duced negligible signal changes, as shown in Figure 8(b).

3.4 | Inflammation imaging

Tissue inflammation is a common pathological process in the clinic. Accurate and clear imaging of inflammatory sites
is helpful for evaluating the severity of disease and monitoring the effect of anti-inflammatory treatment. Macrophage
and monocyte infiltration are important markers for tissue inflammation and play a central role in the pathogenesis of
inflammatory diseases, for example, chronic liver diseases and obesity-related inflammation (Khaled et al., 2019). As
inflammatory macrophages have a strong phagocytic ability and can effectively take up nanoparticle-based contrast
agents, nano-contrast agents are suitable for MRI of inflammatory macrophages. The long circulation time increases
the probability for USPIO nanoparticles to enter into the lymphatic system and be taken up by macrophages in lymph
nodes or peripheral tissues, making USPIO appropriate for detecting macrophages under a number of pathological
inflammatory conditions (Khan et al., 2019).

Simon et al. compared the diagnostic performance of carboxydextran-coated 3.0 nm USPIO with that of Gd-DTPA for
monoarthritis through T1-weighted MRI (Simon et al., 2006). Owing to the much longer blood half-life of 6.0 h for USPIO
contrasting to 20 min for Gd-DTPA, USPIO provided a long-term T1 enhancement of 40–120 min for arthritis, while it was
only of 2.0 min for Gd-DTPA. In addition, USPIO provided a more significant T1 contrast between arthritic areas and normal
joints due to their less accumulation in normal joints than Gd-DTPA, which encourages further investigations on USPIO-
based MRI for inflammation diagnosis. To accurately diagnose the inflammation area, Li et al. developed a dynamic T1/T2-
weighted MRI for inflammatory arthritis in vivo based on a light-addressable assembly of citric acid-stabilized USPIO (X. Li,
Lu, et al., 2019). As shown in Figure 8(c), they modified USPIO with a light-addressable unit diazirine and arthritis-specific
ligand folic acid via a PEG linker to realize very unique light-responsive aggregation for targeting arthritis-related macro-
phages. As shown in Figure 8(d), the USPIO-based nanoprobe showed an excellent T1 MRI performance for inflammatory
area. In addition, under the excitation of 405 nm laser, USPIO nanoprobes were capable of forming particles clusters with
high r2 relaxivity. The formation of the particle clusters is expected to suppress the intravasation of particle probes back to the
blood circulation from the lesion region. Therefore, the smart-designed light-sensitive USPIO nanoprobes exhibit flexible and
controllable dynamic T1/T2 MRI for arthritis, as shown in Figure 8(e), which is effective for improving the diagnosis precision.

4 | CONCLUSION

With lots of unique characteristics, USPIO nanoparticles become superior to the traditional counterparts, for example,
GBCAs and SPIO nanoparticles, and will surely open an avenue towards advanced enhanced MRI and make the accu-
rate diagnosis of diseases step forward into a new era. First of all, USPIO nanoparticles possess low magnetization cau-
sed by the spin canting effect that effectively shortens the T1 relaxation time of protons, which is beneficial for T1

enhancement. Besides, USPIO nanoparticles show excellent imaging performance because the appropriate size and sur-
face modification enable the long-term blood circulation favorable for steady-state imaging and high-resolution imag-
ing. The renal clearance capacity of USPIO nanoparticles is also promoted to reduce the potential risk of long-term iron
overload. Moreover, USPIO nanoparticles can be used to construct stimulus responsive nanoprobes via assembly/
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disassembly to achieve flexible conversion between T2- and T1-weighted MRI modalities. Taking advantage of the spe-
cific stimulus response, USPIO nanoparticles can target the region of interest in an EPR-mediated manner, which in
return improves the accuracy of MRI diagnosis. In addition, featured by large specific surface area and high loading
capacity, USPIO nanoparticles are conducive to be facially modified with targeting ligands to build a smart molecular
imaging probe for precise diagnosis of various diseases, especially tumors. Despite USPIO nanoparticles have shown
enormous potential as the next generation MRI contrast agents, there remain great challenges which require more
efforts in the future to accelerate their translation into clinical applications, specifically:

1. Large-scale synthesis of uniform and biocompatible USPIO nanoparticles remains a huge hurdle to overcome. Small
batch production of USPIO nanoparticles in the laboratory is sufficient for scientific research, but it hardly meets
the requirements for safety assessment prior to the clinical transformation. Developing massive production tech-
niques for USPIO nanoparticles is essentially required for their further clinical translation.

2. Obtaining USPIO nanoparticles with higher relaxivity is very important for accurate and high-resolution MRI. There
are many factors affecting the relaxivity, for example, size, crystalline nature, surface ligand modification, surface
charge, and so on. Their impacts on the relaxivity of USPIO nanoparticles are still waiting for in-depth studies.

3. More specific scanning sequence and parameters for USPIO nanoparticles are also waiting for further optimizations.
The relaxation properties of USPIO nanoparticles are quite different from those of classic GBCAs. It is not always
possible to obtain the optimum results with the common sequence parameters developed for GBCAs. Therefore, it is
imperative to develop sequence parameters for USPIO nanoparticles.

4. Further rigorous and standardized protocols need to be developed for reasonably assessing the biosafety of
USPIO nanoparticles. There are great demands to develop reasonable methods for accurately revealing the
pharmacokinetics, pharmacodynamics, in vivo fate of USPIO nanoparticles, for example, biodistribution, bio-
transformation, bioavailability, and so on. But there is still a lack of a comprehensive understanding on the
interactions of USPIO nanoparticles with organs and tissues and the following long-term biological effects after
intravenous delivery.

5. The long blood circulation time and efficient renal clearance remain the two key parameters to be optimized before
the return of the advanced USPIO into the clinical applications. The properly long retention time in the body is help-
ful for increasing enrichment of USPIO nanoparticles in lesion regions to improve SNR and imaging contrast, while
effective renal clearance helps lower the potential risk of USPIO nanoparticles in vivo. How to reasonably balance
the retention time and clearance time of USPIO is worthy of careful studies.

In summary, the recently developed advanced USPIO nanoparticles hold great promise for clinical applications as
they are apparently in many aspects superior to conventional Gd/Mn-based T1 and SPIO-based T2 contrast agents.
Although the clinical translation of given inorganic nanoparticles for in vivo applications is far more complex than con-
ventional drugs as mentioned above, the return of USPIO into clinical applications will be seen soon.
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