Highly Fluorescent CdTe@SiO2 Particles Prepared via Reverse Microemulsion Method

Lihong Jing, Chunhui Yang, Ruirui Qiao, Mu Niu, Meihong Du, Dayang Wang, and Mingyuan Gao

Institute of Chemistry, Chinese Academy of Sciences, Beijing Center for Physical and Chemical Analysis, Xi San Huang Bei Lu 27, Beijing 100089, China
Max-Planck Institute of Colloids and Interfaces, D-14424, Potsdam, Germany

Received September 27, 2009. Revised Manuscript Received November 12, 2009

Following on from our previous investigations, fluorescent core/shell CdTe@SiO2 particles were prepared via the water-in-oil (W/O) reverse microemulsion method. It was found out that incubating the as-prepared aqueous CdTe quantum dots stabilized by thioglycolic acid in ammoniacal solution not only increased the fluorescence quantum yield of CdTe quantum dots but also gave rise to high retention of fluorescence throughout the silica coating. Under optimized conditions, the fluorescence quantum yield of CdTe quantum dots encapsulated in silica particles reached 47%. Both absorption and fluorescence spectroscopy were used in combination with X-ray photoelectron spectroscopy and electrophoresis to investigate the fluorescence enhancement effect occurring during incubation, the high retention of fluorescence quantum yield, as well as the formation of multicoreshell CdTe@SiO2 particles as a result of the incubation process imposed on the as-prepared CdTe quantum dots.

Introduction

Semiconductor quantum dots (QDs) have been intriguing more and more considerable interests because of their fascinating optical and electronic properties governed by the quantum confinement effect.1-3 Over the past 2 decades, tremendous efforts have been put into the synthesis of QDs by liquid phase-based chemical approaches, and significant progress has been achieved in synthesizing fluorescent QDs with emission covering a wide range of UV-blue to the infrared upon the size and composition manipulations.4-14 Moreover, in comparison with organic fluorophores and fluorescent proteins, QDs also exhibit remarkable spectral features such as broad excitation range, narrow and symmetric emission, high photostability, large molar extinction coefficients, high quantum yields, and etc.1-3,15,16 These superior properties are of great interest and make QDs as a new class of biological probes in high-throughput biodetections and multicolor bioimaging.3,17 Nevertheless, the following problems remain when using QDs as bioprobes, i.e., strong dependence of the fluorescence on the surface states,18 cytotoxicity as a result of the release of heavy metal ions upon photo-oxidation,19 as well as chemical and colloidal instabilities of the QDs in harsh environments.

*To whom correspondence should be addressed. E-mail: gaomy@iccas.ac.cn.

References

An effective solution that can be relied on for overcoming these drawbacks is to encapsulate QDs by inert materials.20–25 The inert encapsulation is expected to impede the leakage of heavy metal ions into environments and suppress the surface defects generated by oxygen from the surrounding media, apart from enhancing the chemical stability of the QDs.20–24 Silica is one of the proper inert materials for coating QDs. Silica coating on the one hand can render different types of hydrophobic QDs good water dispersibility,24–26 and on the other hand offer versatile choices for further covalently functionalizing the silica-coated particles.27–29 In this context, the silica coating is becoming an ideal platform for constructing versatile fluorescent bioprobes based on QDs.3a,24–33

In general, the encapsulation of QDs by silica can be realized by the following approaches, i.e., the Stöber process and reverse (water-in-oil) microemulsion method. By the Stöber process, a precoating upon the use of silane primers such as 3-mercaptopropyltrimethoxysilane (MPS)23,34 or 3-aminopropyltrimethoxysilane (APS)23,36 is typically required in order to make the QD surface vitreophilic, which is a prerequisite for the QDs to act as nucleation sites for the following silica encapsulation. The Stöber process applies for both hydrophobic35,36 and hydrophilic QDs.22,29,34 A ligand exchange is believed to be involved in the precoating procedure.34,35 As an alternative approach, the reverse (water-in-oil) microemulsion method has also been demonstrated to be effective for coating both hydrophilic21,37 and hydrophobic QDs.38–41 With respect to hydrophobic QDs, e.g., CdSe core/shell/shell (CSS) QDs stabilized by hydrophobic amines, it is claimed that the original hydrophobic ligands are first replaced by hydrolyzed tetraethyl orthosilicate (TEOS), then the hydrophobic QDs enter the hydrophilic interior of the micelles where silica growth takes place.40 With respect to hydrophilic QDs, e.g., CdTe stabilized by mercapto acids, it is demonstrated that electrostatic repulsion is responsible for holding CdTe QDs inside the resultant silica particles, especially for the formation of fluorescent CdTe@SiO2 particles with single CdTe nanocrystal cores.21

Although the above-mentioned approaches present a different ability in controlling the morphology of the resultant composite silica particles, they all face the same problem, i.e., a dramatic decrease in the fluorescence quantum yield (QY) inevitably occurs during the encapsulation of QDs,34–41 which is often interpreted by ligand exchanges of silane primer34 or hydrolyzed TEOS.40 Although more direct proof is required to support the molecular mechanism for the formation of surface traps, it remains conclusive that nonirradiative channels are generated during the encapsulation. Therefore, more careful surface engineering are necessary to increase the fluorescence robustness of the QDs prior to silica coating as higher fluorescence QY is definitely in favor of the sensitivity of biodetections by using QD-based fluorescent probes.

It was previously demonstrated that by the reverse microemulsion method, aqueous colloidal CdTe QDs can be incorporated in silica forming fluorescent silica particles with single CdTe QDs cores.21 Moreover, the number of CdTe QDs can be tuned by manipulating the electrostatic interactions among the negatively charged CdTe QDs and the negatively charged silica intermediates within the micro water droplets.21 Nevertheless, a large loss in fluorescence was observed, routinely by a factor of >3 in terms of the fluorescence QY for the CdTe QDs encapsulated. To solve this problem, we recently optimized the preparation by incubating the CdTe QDs in an alkaline solution for a certain time prior to the reverse microemulsion process. It was found out that the fluorescence QY of CdTe QDs incorporated reached 47% at room-temperature, with a very little loss presented in comparison with that of the initial CdTe QDs stabilized by TGA. Herein, we report the preparation of such highly fluorescent CdTe@SiO2 particles and discuss the mechanism leading to high fluorescence QY of CdTe QDs encapsulated in the silica particles.

Experimental Section

Chemicals. All chemicals mentioned in the current investigations were used as received. They are cadmium perchlorate hydrate (Cd(ClO₄)₂·6H₂O) (Aldrich, 99.9% product 40137-4),
flask containing 0.257 g (0.589 mmol) of Al$_2$Te$_3$ lumps, was followed by absorption and fluorescent spectroscopy. The progress of the reaction mixture was adjusted to 12.00 by dropwise addition of 13 mL of 0.5 M H$_2$SO$_4$ into an oxygen-free gas is highly flammable and toxic by inhalation), generated by Biodee Biotechnology Co., Ltd.). Sodium hydroxide, ammonia, and borate were purchased from Beijing Chemical Factory.

Synthesis of CdTe QDs Stabilized by Thioglycolic Acid. CdTe QDs were synthesized according to the method reported previously.2,4 Briefly, 1.262 g of Cd(ClO$_4$)$_2$·6H$_2$O (3.01 mmol) was dissolved in 160 mL of water, and then 0.371 g of TGA (3.91 mmol) was then introduced while stirring. The pH value of the reaction mixture was adjusted to 12.00 by dropwise addition of 1 M NaOH aqueous solution before deaeration by bubbling N$_2$ through it for 1 h. After that, with stirring, H$_2$Te gas is highly flammable and toxic by inhalation), generated by dropwise addition of 13 mL of 0.5 M H$_2$SO$_4$ into an oxygen-free flask containing 0.257 g (0.589 mmol) of Al$_2$Te$_3$ lumps, was introduced into solution driven by a slow stream of N$_2$. After approximately 20 min, the resultant solution was heated to reflux under open-air conditions. The progress of the reaction was followed by absorption and fluorescent spectroscopy. The typical absorption and fluorescence spectra of the as-prepared CdTe QDs obtained after 9 h reflux are presented in Figure 1.

Incubation of As-Prepared CdTe QDs in Alkaline Solution. Typically, an alkaline condition was required for hydrolyzing CdTe QDs obtained after 9 h reflux under open-air conditions. The progress of the reaction was followed by absorption and fluorescent spectroscopy. The fluorescence QY of CdTe QDs encapsulated showed in Figure 1 was determined to be ∼61%.

The fluorescence QY of the CdTe QDs encapsulated in the CdTe@SiO$_2$ composite particles was determined according to literature method.21 In general, by comparing with the parent CdTe QDs whose fluorescence QY was determined by the method mentioned above, the fluorescence QY of the CdTe QDs in SiO$_2$ particles was obtained. In detail, the cadmium content of a given aqueous solution containing CdTe@SiO$_2$ particles was first determined by an inductively coupled plasma optical emission spectrometer (ICP-OES) after the CdTe@SiO$_2$ particles were digested by a mixture of HCl, HNO$_3$, and HF. Then, a colloidal dispersion of the CdTe@SiO$_2$ particles and a diluted aqueous solution of the parent CdTe QDs were prepared at the same cadmium concentration. The integrated areas of emissions from Rhodamine 6G and CdTe QDs, respectively, the fluorescence QY of the CdTe QDs was calculated by taking a QY of 95% for Rhodamine 6G in diluted solution.44 The fluorescence QY of the CdTe QDs encapsulated in the silica particles was determined and compared to get the fluorescence QY of CdTe QDs encapsulated in the silica particles.

Characterizations. Fluorescence and UV–vis absorption spectra were recorded at room temperature with a Cary Eclipse fluorescence spectrophotometer and a Cary 50 UV–vis spectrophotometer, respectively. The transmission electron microscopy (TEM) images of the resultant CdTe@SiO$_2$ particles were recorded with a JEM-100CXII microscope operating at an accelerating voltage of 100 kV. The cadmium concentration was determined by the ICP-OES method using a Thermo Fisher IRIS Intrepid II XSP. X-ray photoelectron spectroscopy (XPS) measurements were performed with an ESCALAB 220i-XL photoelectron spectrometer from VG Scientific using 300 W Mg K$_\alpha$ radiation ($h\nu = 1253.6$ eV). The binding energies for different elements were calibrated with respect to the C1s line at 284.8 eV from the contaminant carbon. A combination of

a Shirley type background and a linear type background was used during curve-fitting. All fittings were carried out using Voigt shaped peaks with an equal fwhm (full width at half-maximum) for each data set. Agarose gel electrophoresis was employed to reveal the variation of surface charge density of the CdTe QDs obtained at different incubation time points. In detail, 1% agarose gel was cast in Tris-borate buffer (0.5×TB, pH = 8.5). Then, a 10 μL aliquot of CdTe QDs solution was mixed with 4 μL of 30 wt % glycerol in TB buffer. The mixture was run in 0.5×TB buffer at a constant voltage of 60 V for about 1 h. Following the electrophoresis, the gel was photographed under UV irradiation by Tanon GIS-1010 gel image analysis system (Tanon Science & Technology Co, Ltd., Shanghai, China).

Results

1. Optical Development of CdTe QDs during Incubation. To investigate the effects of incubation on the optical properties of the CdTe QDs, both absorption and fluorescence of the CdTe QDs were monitored during the incubation. The results are presented in Figure 2. In general, the incubation process leads to a gradual increase in absorbance within the whole absorption range of CdTe QDs and progressive red shifts at the absorbance onset. Accompanying with these variations in absorption, fluorescence intensity is greatly enhanced as a function of the incubation time. Meanwhile the emission peak progressively shifts to red, in accordance with the red shifts in the absorption onset. As the fluorescence QY stops increasing after 8 days of incubation, as shown in Figure 2b, the CdTe QDs obtained on the eighth day of incubation were chosen for the following preparation of the CdTe@SiO2 composite particles. The fluorescence QY of the CdTe QDs incubated for 8 days was determined to be ∼82%.

II. General Morphology of CdTe@SiO2 Composite Particles. A representative TEM image of the CdTe@SiO2 particles obtained by reverse microemulsion method is shown in Figure 3a. Quite similar to the literature results,21 by the current synthetic protocol, nearly monodispersed CdTe@SiO2 particles of 79.4 ± 6.7 nm were obtained. The fluorescence of the CdTe QDs encapsulated presents very small variation with respect to peak position in comparison to those of the as-prepared and the parent CdTe QDs as shown in Figure 3b. The fluorescence QY of the CdTe QDs in the resultant silica particles was determined to be 47%. Because of the high fluorescence efficiency, the aqueous dispersion of the resultant CdTe@SiO2 particles exhibit reddish fluorescence even under ambient conditions, see Figure 3c. Close observation further reveals that, apart from particles containing single CdTe nanocrystal cores, the composite particle sample also contains 52% CdTe@SiO2 particles with multiple cores, which was not observed in our previous investigations.

III. Effects of Incubation Time on Composite Structure of CdTe@SiO2 Particles. As multicore CdTe@SiO2 particles were obtained upon the use of incubated CdTe QDs, to further discover the effects of incubation time on the composite structure, CdTe QDs were extracted at different incubation time points, i.e., 0, 4, 8, 23 days, and were used to prepare the fluorescent silica particles under the same preparative conditions. The TEM images of the resultant fluorescent particles are shown in parts a–d of Figure 4. It can be found out that as the incubation process is being prolonged, the percentage of multicore
CdTe@SiO₂ increases, eventually leading to the formation of irregularly shaped particles after the incubation process proceeded for 23 days. The variation on the percentage of multicore silica particles is more clearly seen in Figure 4e.

Discussion

As mentioned in the Introduction, the silica coating for fluorescent QDs displays a number of significant advantages over the naked QDs with respect to bioapplications. However, huge drops of fluorescence QY always occur inevitably during the silica coating independent of the coating methodology, suggesting that generation of nonirradiative pathways cannot simply be avoided. The decrease of fluorescence QY was explained by various mechanisms mainly involving ligand exchanges. In addition, the impurity was also taken as a key factor responsible for the loss of fluorescence QY. Even in the most successful case, only 58% of the initial fluorescence QY was preserved for similarly structured core/shell type of CdSe@SiO₂ silica particles that were prepared by reverse microemulsion method upon the use of hydrophobic CSS type CdSe QDs. As the CSS type of structure was constructed for increasing the fluorescence QY of the parent QDs, the fluorescence QY of the resultant CdSe@SiO₂ core/shell particles also reached 35% which is to our best knowledge the highest fluorescence QY value ever achieved for QDs incorporated in silica particles. In our previous investigation, although the fluorescent CdTe@SiO₂ core/shell particles with single CdTe nanocrystal cores were also achieved by reverse microemulsion method, only 35% of the initial fluorescence QY was preserved. Partly because of the relatively low fluorescence QY of the parent CdTe QDs costabilized by 1-thioglycerol and thioglycolic acid, the fluorescence QY of as-prepared CdTe@SiO₂ core/shell composite particles was only of 7%. Different from our previous investigations, the CdTe QDs used herein were stabilized solely by thioglycolic acid. The fluorescence QY of as-prepared CdTe QDs already reached 61%. In addition, the incubation process further increased the fluorescence QY up to 82% under optimized conditions. Consequently the fluorescence QY of the resultant CdTe@SiO₂ core/shell composite particles was 47%. In comparison with that of the incubated CdTe QDs, 57% of the initial fluorescence QY is retained, which is quite comparable to the ratio achieved by using CSS type of hydrophobic CdSe QDs.

It was previously demonstrated that the fluorescence QY of CdTe QDs can strongly be enhanced by forming a CdTe@CdS core/shell structure through the photodegradation of thioglycolic acid upon illumination. The construction of the CdTe@CdS core/shell structure leads to quite comparable red-shifts as shown in Figure 2 with respect to both absorption onset and fluorescence peak position. Therefore, it can be deduced that a CdS shell structure was also formed during the incubation, which can find supportive evidence from the following spectroscopy analysis.

To better present the variation in absorption caused by incubation, the difference absorption spectra between those recorded during incubation and that recorded before incubation are presented in Figure 5. It is quite obvious that the increases of absorbance are mainly located in the spectroscopic region lower than 400 nm. After approximately 8 days, an absorption shoulder at around 370 nm develops and transforms into a clear absorption peak later on. According to previous
this newly developed absorption peak is very likely the characteristic exciton absorption of CdS clusters. The slight increase in the absorbance around the exciton peak position of CdTe and the red-shift of absorption onset further suggest that CdS was formed on the surface of CdTe via epitaxial growth.5,43,50 As CdS has a wider bandgap than CdTe, a few monolayers of CdS shell should be sufficient for effectively increasing the fluorescence QY of the CdTe particle core according to investigations on similarly structured nanocrystals.5,43,50–54 Another important indication for the formation of CdTe@CdS core/shell structure is that nearly no difference between the fluorescence excitation spectra recorded before and after incubation is presented as shown in Figure 6, which suggests that incubation did not alter the fluorescent center.43 It should be pointed out that the CdTe@CdS core/shell structure observed in our previous investigations was achieved by illumination.43 Although within a comparable time frame, the incubation process gave rise to a very similar fluorescence enhancement effect as shown in Figure 2, the CdTe QDs were incubated in the dark in the current investigations rather than under illumination. To discover the mechanism leading to the formation of CdS under the current experimental conditions, the following experiments were carried out. Three solutions containing cadmium ion and TGA were prepared according the ratio and concentrations used for the preparation of CdTe QDs but in three different alkaline media, i.e., aqueous solution containing NaOH (15.9×10^{-3} M), aqueous solution containing ammonia (0.45 wt % NH_{3}H_{2}O), and aqueous solution containing both NaOH (15.9×10^{-3} M) and ammonia (0.45 wt % NH_{3}H_{2}O). The absorption spectra of Cd-TGA complexes in different alkaline media. Spectra shown in panel a were recorded right after the solutions were prepared, while the spectra shown in panel b were recorded 8 days later after the solutions were kept in the dark.

can only choose to condense on the surface of CdTe particles forming the core/shell particles rather than forming nuclei by itself, which interprets the fluorescence enhancement effect shown in Figure 2.

Apart from catalysis of the formation of CdS, ammonia has great probability to form a coordination bond with the cadmium ion on the surface of CdTe QDs, because at the given pH of 12.28, 99.9% of ammonia molecules were unprotonated. To further investigate the chemisorption of NH₃ on CdTe QDs, XPS characterizations on both as-prepared and incubated CdTe QDs were carried out. Figure 8 presents XPS spectra of the as-prepared and incubated CdTe QDs. The Cd 3d₅/₂ and N 1s signals were carefully fitted using a Shirley-type background. The best fits are tabulated in Table 1. Before incubation, the Cd 3d₅/₂ peak was fitted by two peaks located at 404.7 and 405.1 eV, which can be attributed to cadmium binding with Te and S, respectively.⁵⁵,⁵⁶ These binding situations remained after incubation. However, two additional signals appear at 403.8 and 405.7 eV, respectively. According to references, these two signals can be assigned to Cd−O and Cd−N, respectively. The Cd−O coordination is probably caused by surface binding OH groups at pH 12.28, partly due to the degradation of surface capping TGA. The appearance of Cd−N coordination is also supported by the fact that N signal appears in the incubated sample. The N 1s signal is primarily a convolution of two peaks at 399.8 and 401.6 eV, respectively. These two peaks can be assigned accord-

Table 1. Best Fitting Data for Cd (3d₅/₂) and N (1s) Signals Recorded from the As-Prepared CdTe QDs and the CdTe QDs Incubated in Ammoniacal Solution for 8 Days

<table>
<thead>
<tr>
<th></th>
<th>BE (eV)</th>
<th>fwhm</th>
<th>area (%)</th>
<th>assignment of chemical state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd (3d₅/₂) (As-Prepared CdTe QDs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>404.7</td>
<td>1.4</td>
<td>58.1</td>
<td>Cd−Te</td>
<td></td>
</tr>
<tr>
<td>405.1</td>
<td>1.4</td>
<td>41.9</td>
<td>Cd−S</td>
<td></td>
</tr>
<tr>
<td>Cd (3d₅/₂) (CdTe QDs Incubated for 8 Days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>403.8</td>
<td>1.4</td>
<td>11.1</td>
<td>Cd−O</td>
<td></td>
</tr>
<tr>
<td>404.7</td>
<td>1.4</td>
<td>27.9</td>
<td>Cd−Te</td>
<td></td>
</tr>
<tr>
<td>405.1</td>
<td>1.4</td>
<td>33.9</td>
<td>Cd−S</td>
<td></td>
</tr>
<tr>
<td>405.7</td>
<td>1.4</td>
<td>27.1</td>
<td>Cd−N</td>
<td></td>
</tr>
<tr>
<td>N (1s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>399.8</td>
<td>1.7</td>
<td>48.3</td>
<td>N−O(CO) a</td>
<td></td>
</tr>
<tr>
<td>401.6</td>
<td>1.7</td>
<td>51.7</td>
<td>N−Cd</td>
<td></td>
</tr>
</tbody>
</table>

a Ammonia binding with carboxylic acid.

![Figure 8. XPS spectra of the as-prepared CdTe QDs (a) and CdTe QDs incubated for 8 days (b), together with best fits for Cd 3d₅/₂ and N 1s. The N 1s signals were enlarged and shown in the inset.](image)

As stated above, the incubation process not only increased the fluorescence QY of the CdTe QDs but also the number of CdTe nanocrystal cores in the resultant CdTe@SiO₂ particles as shown in Figure 4. That latter effect is greatly desirable for increasing the fluorescence brightness of the CdTe@SiO₂ particles. According to our previous investigations, the formation of well-defined single core/shell CdTe@SiO₂ is independent of the initially feeding amount of the parent CdTe QDs.²¹a Further investigations suggest that as the molecular weight of

![Figure 9. Agarose gel electrophoresis (1%) in 0.5 TB buffer (pH = 8.59) of CdTe QDs incubated for 0 (lane 1#), 4 (lane 2#), 8 (lane 3#), 16 (lane 4#), and 23 days (lane 5#), respectively.](image)

Oligomeric silica intermediates increases, the cations induced by the oligomeric silica intermediates evenly distributed throughout the microscale water pool and the region around the oligomeric intermediates is locally negatively charged. This local negatively charged background will reduce the screen between two CdTe QDs; consequently, the Debye screening length for CdTe QDs will increase, which induces a net repulsive interaction between two neighboring CdTe QDs. As the sol–gel process goes on, especially when the Debye screening length becomes larger than the radius of the microwater pool, most of the QDs will be driven to the boundary of the aqueous microdroplet, except for the last CdTe QD located at the center of the water pool due the symmetry of the repulsive interaction between this specific CdTe QD and the others located at the surface of the microwater pool.21

According to the XPS analysis mentioned above, the chemisorptions of ammonia on CdTe QDs will reduce the surface charge density of CdTe QDs, consequently weakening the electrostatic repulsion among CdTe QDs and leading to the formation of multicore/shell structures for CdTe@SiO₂ particles. To provide direct proof of this hypothesis, agarose gel electrophoresis was employed to probe the variation of surface charge density of CdTe QDs incubated for different periods of time. A typical migration pattern 1% agarose gel electrophoresis of QDs in 0.5 TB buffer, pH = 8.59, is shown in Figure 9. It is quite clear that incubated QDs migrate slower than the as-prepared CdTe QDs. Furthermore, the migration of the incubated QDs shows an incubation time-dependent behavior, indicating that the surface charge density of incubated CdTe QDs is gradually reduced against incubation time. Therefore, it can be concluded that the functions of ammonia used for incubating CdTe QDs are twofold: (1) it promotes the decomposition of TGA leading to the formation of CdTe@CdS core/shell QDs that present higher fluorescence QY in comparison with the as-prepared CdTe QDs, and (2) it reduces the surface charged density of CdTe QDs during the incubation, giving rise to the formation of a large percentage of multicore/shell CdTe@SiO₂ particles.

Conclusions

In summary, highly fluorescent core/shell CdTe@SiO₂ particles with fluorescence QY up to 47% were prepared by the reverse microemulsion method. The key procedure was to incubate the as-prepared CdTe QDs stabilized by TGA in ammoniacal solution prior to the reverse microemulsion process. As ammonia can catalyze the degradation of the surface capping TGA, the fluorescence QY of the CdTe QDs was consequently enhanced due to the formation of CdTe@CdS core/shell type structures, while the buildup of such a semiconductor–semiconductor core/shell structure was greatly in favor of the retention of fluorescence QY throughout the silica coating. Consequently, highly fluorescent core/shell CdTe@SiO₂ particles with uniform size were obtained. Further experimental results also suggested that the incubation process decreased the surface charge density of the incubated CdTe QDs, consequently giving rise to multicore/shell structured CdTe@SiO₂ particles that are greatly desirable as high brightness fluorescence probes. The current investigations thereby provide a simple and useful method for coating aqueous fluorescent QDs with silica to achieve high-quality fluorescent probes.

Acknowledgment. The current investigations were financially supported by NSFC (Grants 20673128, 20640430564, 20773140, and 20820102035).

Supporting Information Available: The contents of Supporting Information on the (1) temporal evolution of the pH value of incubation medium, (2) PL peak position and PL quantum yield as a function of the pH of the incubation medium, and (3) PL intensity of CdTe@SiO₂ versus time (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.